Relevant scientific literature
Bioproducts from renewable methanol: The paraformaldehyde approach
Jan A.M. de Bont, Bram J. Visscher, Timo J.P. van Roosmalen, Jan Wery, Bart W. Swinkels and Ger G. Bemer (2025)
https://doi.org/10.1016/j.jbiotec.2025.03.004
Next-generation feedstocks methanol and ethylene glycol and their potential in industrial biotechnology
Nils Wagner, Linxuan Wen, Cláudio J.R. Frazão, Thomas Walther (2023)
https://doi.org/10.1016/j.biotechadv.2023.108276
Systems-level analysis provides insights on methanol-based production of L-glutamate and its decarboxylation product γ-aminobutyric acid by Bacillus methanolicus.
Marta Irla, Ingemar Nærdal, David Virant, Trygve Brautaset, Tobias Busche, Dušan Goranovič, Carsten Haupka, Stéphanie Heux, Gregor Kosec, Christian Rückert-Reed, Volker F Wendisch, Luciana F Brito, Cláudia M Vicente (2025)
https://doi.org/10.1101/2024.10.14.618164
Mitigating toxic formaldehyde to promote efficient utilization of C1 resources
Mengshi Jia, Lei Shao, Jie Jiang, Wankui Jiang, Fengxue Xin, Wenming Zhang, Yujia Jiang, and Min Jiang (2025)
https://doi.org/10.1080/07388551.2024.2430476
The influence of dissolved oxygen on Pseudomonas AM1 grown on methanol in continuous culture
D. G. Maclennan, J. C. Ousby, R. B. Vasey and N. T. Cotton (1971)
https://www.microbiologyresearch.org/content/journal/micro/10.1099/00221287-69-3-395
Growth yields of microorganisms on methanol and methane. A theoretical study
J. P. Van Dijken and W. Harder (1975)
https://doi.org/10.1002/bit.260170103
Evolutionary aspects of autotrophy
J R Quayle and T Ferenci (1978)
https://doi.org/10.1128/mr.42.2.251-273.1978
Single-Cell Protein
R.B. Vasey and K.A. Powell (1984)
https://doi.org/10.1080/02648725.1984.10647802
Formaldehyde uptake by Methylobacterium sp. MF1 and Acidomonas Methanolica MB 58 with the different formaldehyde assimilation pathways
R. Mitsui, H. Kitazawa, T. Sato and M. Tanaka (2006)
https://web.archive.org/web/20200321133709id_/http://myukk.xsrv.jp/free_journal/download.php?fn=ES620_full.pdf
Unravelling Formaldehyde Metabolism in Bacteria: Road towards Synthetic Methylotrophy
Klein, V.J.; Irla, M.; Gil López, M.; Brautaset, T.; Fernandes Brito, L. (2022)
https://doi.org/10.3390/microorganisms10020220
Methanol-based biomanufacturing of fuels and chemicals using native and synthetic methylotrophs
A. Sarwar and E.Y. Lee (2023)
https://www.sciencedirect.com/science/article/pii/S2405805X23000467
Evolution engineering of methylotrophic E. coli enables faster growth than native methylotrophs
Liang-Yu Nieh, Frederic Y.-H. Chen, Hsin-Wei Jung, Kuan-Yu Su, Chao-Yin Tsuei, Chun-Ting Lin, Yue-Qi Lee, James C. Liao (2024)
https://doi.org/10.1101/2024.04.18.589993
A synthetic methylotrophic Escherichia coli as a chassis for bioproduction from methanol
Michael A. Reiter, Timothy Bradley, Lars A. Büchel, Philipp Keller, Emese Hegedis, Thomas Gassler and Julia A. Vorholt (2024).
https://doi.org/10.1038/s41929-024-01137-0
Innovation Outlook: Renewable Methanol
IRENA AND METHANOL INSTITUTE (2021)
https://www.methanol.org/wp-content/uploads/2020/04/IRENA_Innovation_Renewable_Methanol_2021.pdf
Formaldehyde
Adam W. Franz, Helmut Kronemayer, Daniel Pfeiffer, Roman D. Pilz, Gänther Reuss, Walter Disteldorf, Armin Otto Gamer, Albrecht Hilt (2016)
https://doi.org/10.1002/14356007.a11_619.pub2
Die Kinetik der Reaktionen polymerer Aldehyde, I. Mitteil.: Die Lösungsgeschwindigkeit von Paraformaldehyd (In German)
J. Löbering (1936)
https://doi.org/10.1002/cber.19360690811
Conceptual design of a crystallization-based trioxane production process
Christian Frederik Breitkreuz, Maximilian Dyga, Esther Forte, Fabian Jirasek, Jan de Bont, Jan Wery, Thomas Grützner, Jakob Burger, Hans Hasse (2022)
https://doi.org/10.1016/j.cep.2021.108710.